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A B S T R A C T

Simple shear tests are an increasingly attractive method to determine the equivalent stress-strain response of
sheet metals. Unlike uniaxial tensile tests, shear tests can reveal the hardening behaviour of materials to large
strains without stress state deviations triggered by tensile instability. However, there has been some uncertainty
surrounding the interpretation of the shear response of anisotropic materials due to the definition of appropriate
equivalent strain measures and the development of normal stresses. In the present study, the development of
normal stresses during simple shear of anisotropic materials is analyzed and are found to be negligible relative to
the magnitude of the applied shear stress. It is demonstrated that erroneous normal stresses may arise as a
consequence of calibration of anisotropic yield functions. An experimental methodology was then proposed
consisting of shear tests in multiple orientations to characterize shear anisotropy and account for rotation of the
material frame on the hardening response. The methodology considers non-linear interpolation using either a
calibrated yield function using both shear and tensile data or from a simplified phenomenological form cali-
brated using only the shear data. A range of automotive alloys were considered including DP980 and DP1180
advanced high strength steel alloys, an aluminum-magnesium alloy, AA5182-O, and an AA6063-T6 aluminum
extrusion with severe anisotropy. It is demonstrated that for relatively isotropic materials such as the DP steels,
accounting for material frame rotation results in an approximately 2% difference in the extracted hardening data
compared to the case when the material rotation is neglected. This variation is expected to be within the ex-
perimental uncertainty. For materials with more pronounced anisotropy such as AA5182-O sheet and AA6063-
T6 extrusions, the change in the hardening response is more significant and can reach up to 5% and 15%,
respectively.

1. Introduction

Finite-element simulations of automotive alloys in metal forming
processes and component performance evaluation rely upon the accu-
rate characterization of the stress-strain response to large strains that
are far beyond the achievable strains in uniaxial tensile tests before the
onset of diffuse necking. To mitigate this issue, inverse techniques such
as inverse finite-element analysis (e.g. Dunand and Mohr, 2010;
Tardif and Kyriakides, 2012; Roth and Mohr, 2016; Abedini et al.,
2018a; Baral et al., 2019; Ha et al., 2019) and internal-to-external work
balance techniques such as the virtual field methods (e.g. Coppieters
et al., 2011; Rossi et al., 2018) have been utilized to extract flow curves
beyond the diffuse necking strain in tensile tests. Deformation in uni-
axial tensile tests is homogeneous and plane stress until the onset of
diffuse necking when the stress state in the neck transitions towards a
triaxial stress state of plane strain tension with severe local stress and

strain gradients. Inverse finite-element techniques require precise 3-D
anisotropic yield functions to capture the local necking process which is
challenging to accurately calibrate due to the characterization tests for
anisotropy of sheet metals often being restricted to plane stress. In
particular, difficulties in the experimental characterization of the yield
stress in plane strain tension leads to approximations (see Flores et al.,
2010) that add further uncertainty to inverse methods. Furthermore,
the correlation of the “global” load-displacement from experimental
measurements and predictions from simulations of tensile tests does not
indicate that the correct hardening model has been determined. The
predicted local neck dimensions at the minimum cross-section must also
be validated (Tardif and Kyriakides, 2012).

Despite the relative popularity of inverse numerical approaches, the
solutions are sensitive to the anisotropic yield function, strain rate,
mesh size, and element formulation which can alter deformation within
the neck and can be implicitly washed-out by altering the hardening
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model. Effectively, the errors and uncertainties in the finite-element
model are compensated for in the hardening response which at least in
theory, is a material constant and not a calibration parameter.
Experimental approaches for constitutive characterization that avoid
numerical simulations or a priori assumptions of the material behaviour
remain of great interest to the automotive industry.

The hydraulic bulge test is perhaps the preferred experimental
method to determine the hardening response of sheet metals to larger
strain levels than in the uniaxial tensile test (Koc et al., 2011). From the
analysis of Hill (1950) using an isotropic power law hardening material
with an exponent of “n”, instability in a tensile test will occur when

= =ε ε neq 1 but is delayed until a much higher strain level of
= = +ε ε n2 4(1 2 )/11eq 1 in the bulge test. For low hardening materials,

n ≈ 0, the bulge test can provide the stress response until an equivalent
strain of about 0.36 whereas the uniaxial tensile test will theoretically
neck at the onset of yielding. Although the mechanics of spherical
bulging of a membrane are well-suited for constitutive characterization,
there are experimental challenges that need to be considered. Bending
strains, die entry radii, and material anisotropy are unavoidable in the
test and may affect the curvature of the bulge. Measurement of the
curvature using stereo digital image correlation (DIC) including the
assumed functional form for the spherical or ellipsoidal surface and its
calibration from the spatial data can significantly influence the flow
stress. Resolving the curvature of the sheet at lower strain levels is also
challenging and provides a practical lower bound for the stress-strain
response. It is worth mentioning that as pointed out by Mudler et al.
(2015), the stress state in bulge tests of anisotropic materials lies be-
tween the bounds of equal biaxial stress and equal biaxial straining. A
recent study by Min et al. (2017) provides a comprehensive metho-
dology for the analysis of bulge tests and highlights the experimental
details that must be taken into account. The complexities of the bulge
test, along with requiring a specialized test frame, provide a barrier for
many research labs.

Alternatively, the use of shear tests to determine the hardening
behaviour of materials has been on the rise in recent years (Peirs et al.,
2012; Yin et al., 2014; Muhammad et al., 2017; Rahmaan et al., 2017;
Abedini et al., 2017a, 2018b; Traphöner et al., 2018) specifically after
the advent of DIC techniques for full-field strain measurement. Before
DIC, determination of local strains in the shear gauge region was
challenging because unlike uniaxial tension, there is no intrinsic gauge
length in shear tests. Simple shear tests can be conducted using stan-
dard tensile test frames but in contrast to tensile and bulge tests, shear
tests do not suffer from tensile instability and provide a direct way of
establishing the stress-strain response to large strain levels. The me-
chanics of simple shear ensures that deformation is both plane stress
and plane strain without any through-thickness stress or strain gra-
dients. Despite the considerable advantages of simple shear tests, there
have been many debates in the literature surrounding the analysis of
shear data and the selection of shear specimen geometry. The shear test
geometry must provide homogeneous deformation within the gauge
region with an incremental principal strain ratio of -1.0. Many pro-
mising designs have been proposed and discussed by Peirs et al. (2012),
Yin et al. (2014), and Roth and Mohr (2018). Furthermore, the choice of
objective rate and the appropriate definition for the work-conjugate
equivalent strain for finite plastic deformation in shear have been re-
cently addressed by Butcher and Abedini (2017). More recently,
Abedini et al. (2018b) derived a physically-necessary constraint on
plastic flow that must be enforced upon the pressure-independent
plastic potential or yield function if the associated flow rule is assumed.
If the so-called shear constraint is not enforced, a spurious non-zero
hydrostatic stress or stress triaxiality will be predicted that may sig-
nificantly alter the mechanical response and will influence the failure
predictions using phenomenological damage models.

Rahmaan et al. (2017) utilized the mechanics of shear deformation
to develop a novel technique to extract the hardening response of a
DP600 steel and an AA5182-O aluminum alloy using a combination of

tensile and shear tests. Using plastic work equivalence, the experi-
mental shear-to-equivalent stress ratio was used to convert the shear
stress versus plastic work data to a work-conjugate equivalent stress
versus plastic strain. Noder and Butcher (2019) refined the metho-
dology to first use the tensile data until the plastic work at the onset of
diffuse necking to avoid uncertainty with initial inhomogeneous
yielding of the shear specimen while the hardening curve at large
strains was determined by shear data. A limitation of the methodologies
of Rahmaan et al. (2017) and Noder and Butcher (2019) is that shear
anisotropy was assumed to be marginal over the range of strain con-
sidered so that the shear-to-equivalent stress ratio remains constant
despite rotation of the material frame. For materials with shear aniso-
tropy, it was left to the analyst to determine an appropriate cut-off
strain for the shear conversion based upon rotation of the material axes.
Recently, Chen et al. (2018) performed a parametric study on the in-
fluence of rotation of the material frame on the hardening response
obtained by torsion tests on AA6061-T6 tubes performed by Scales et al.
(2016). The Hill48 yield function (Hill, 1948) was employed and cali-
brated to predict shear anisotropy to convert the shear stress to an
equivalent stress, which was demonstrated to be important to consider
in the analysis. The rotation of the material axes by Chen et al. (2018)
was based upon the material spin using the vorticity tensor. Recently,
Kohar et al. (2019a) proposed a method to account for the influence of
the plastic spin on the material axes in phenomenological plasticity to
improve the predicted material response in shear stress states.

The objective of the present work is to generalize the experimental
methodology of Rahmaan et al. (2017) by accounting for shear aniso-
tropy and the rotation of the material frame with deformation. The
accuracy of anisotropic yield functions that are predominantly cali-
brated using tensile-based data to predict shear anisotropy when ana-
lyzing shear tests is uncertain and may introduce larger errors than
assuming that the shear-to-equivalent stress ratio is constant over the
range of deformation. Moreover, the development of normal stresses
due to shear anisotropy and their interaction with an assumed yield
criterion on the hardening response requires further investigation. To
these ends, the formation of normal stresses and the influence of the
rotation of the material axes of anisotropic materials will be studied in
the present study from the perspective of mechanics of shear de-
formation. An experimental methodology is then proposed to employ
shear tests at several orientations to account for shear anisotropy on the
hardening response. A range of commercial automotive alloys with
body centred cubic (BCC) and face centred cubic (FCC) crystal struc-
tures with varying degree of anisotropy are considered. The materials
include two dual-phase (DP) advanced high strength steels with rela-
tively mild anisotropy, DP980 and DP1180, an aluminum-magnesium
alloy sheet, AA5182-O, and an AA6063-T6 extrusion with severe ani-
sotropy. Hexagonal close packed (HCP) materials were intentionally
excluded due to their strong tension-compression asymmetry and de-
formation mechanisms of slip and twinning that lead to the so-called
Swift effects in shear (Swift, 1947). It will be shown that the material
axes rotation in simple shear impacts the hardening response of the four
automotive alloys with various degrees of severity.

2. Mechanics of Simple Shear

2.1. Strain State

The fundamentals of the mechanics of simple shear deformation are
briefly reviewed in this section. The readers are referred to Butcher and
Abedini (2017) for a more detailed description, including derivations of
the equations presented in this section. An element undergoing simple
shear deformation is shown in Figure 1. The deformation gradient, F, is:
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Note that second-order tensors are designated using bold-face ita-
licized letters such as F, and fourth-order tensors as bold-face capital
letters as in the elastic moduli tensor, L̄.

The rate of deformation tensor, D, and its principal strain incre-
ments (eigenvalues) in descending order are:
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and the vorticity tensor, W, is:
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The rate of deformation tensor, D, is the objective rate of the
logarithmic strain and is exactly integrable to the finite strain solution
when using the logarithmic spin tensor (Xiao et al., 1997). The total
logarithmic strain and its principal values are:
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The orientation of the major principal strain is defined by the angle:
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⎝
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⎠
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γ
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(7)

and rotates with deformation from α=45° (γ = 0) to α=0° (γ → ∞).
From the derivative of the finite strain solution of Eq. (5), the incre-
mental principal strains are related to the applied shear as:

=
+
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(8a-c)

Assuming that the material axes (such as the RD-TD shown in
Figure 1) rotate according to the applied deformation (neglecting
plastic and microstructural spin), the rotation tensor to locate the ma-
terial axes is obtained from a polar decomposition of the deformation

gradient of Eq. (1) as:
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where x and x′ are the reference and rotated frames, respectively. Note
that the analysis of Chen et al. (2018) determined the location of the
material axes in torsion using an integral of the vorticity tensor in
Eq. (4) to obtain the rotation tensor as
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which is an approximation to the exact solution of Eq. (9a).

2.2. Stress State and Equivalent Strain

In a simple shear test, the applied stress tensor in the global co-
ordinate frame is:
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in which F is the applied shear force, and Ao is the initial shear gauge
area which remains constant during deformation. The magnitude of the
normal stress components in Eq. (11) are negligibly small and are fur-
ther discussed in Section 2.2.1. The local strains in the gauge area of
shear specimens are measured using DIC techniques. The incremental
plastic work balance of the applied stress and plastic strain is:

= =dw σdε τdγ¯p
eq
p p (13)

Assuming no material softening, =σ σ̄eq , the equivalent plastic
strain increment is:
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where G is the shear modulus and was assumed to be constant and
independent of direction (isotropic elasticity). In Eq. (14), τ/σeq is the
shear-to-equivalent stress ratio at the current orientation of the material
axes denoted by the angle β. This angle is governed by the initial or-
ientation of the material axes, βi (see Figure 1), and the applied shear γ,
and can be determined using the rotation tensor of Eq. (9) as:

= −β β φi (15a)
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Section 2.3 will address the determination of τ/σeq and the con-
version of the shear stress to an equivalent stress.

2.2.1. Normal Stress in Simple Shear
In general, simple shear gives rise to both shear and normal stresses

due to the induced rotation leading to:
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The condition for the shear stress state to be plane stress, =σ 033 ,
and purely deviatoric, J3 = det(sij) = 0, enforces the expected result of

Figure. 1. An element is subject to simple shear deformation. The x-y is a
global (fixed) frame. The RD-TD is the material frame that has been depicted
schematically to show the rotation of the material axes.
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a vanishing hydrostatic stress. The normal and principal stress com-
ponents are deviatoric and are thus equal and opposite such that

= −σ σ22 11 and = −σ σ1 3. The development of the normal stress has been
investigated using isotropic yield functions from a numerical perspec-
tive for various cases by Bruhns et al. (1999), Rahmaan et al. (2017) and
Butcher and Abedini (2017). For experimental characterization of ani-
sotropic materials in shear, the development of normal stresses war-
rants closer investigation.

To provide insight into the evolution of the stress components, we
can adapt the procedure of Bruhns et al. (1999) to rely upon the mea-
sured shear stress instead of assuming a yield function to perform the
analysis. Assuming the associated flow rule, the logarithmic objective
rate of true stress in simple shear for an elastic-plastic material can be
written as:

⎜ ⎟= + − = − = ⎛
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where N is the normal tensor and Ωlog is the logarithmic spin tensor:

= ⎛

⎝
⎜ +

+
+

⎞

⎠
⎟

⎡

⎣
⎢−

⎤

⎦
⎥−

dγ
γ

γ
γ γ

Ω
4

4
4 4 sinh ( /2)

0 1 0
1 0 0

0 0 0
log

2 2 1 (18)

The normal tensor must now be determined. The applied deforma-
tion gradient for shear enforces isochoric and plane strain deformation
by definition in Eq. (1) and is independent of whether the material is
assumed to be elastic or plastic. For plastic deformation, the imposed
strain field forms a constraint upon the normal vectors such that

= −N N22 11 and = −N N1 3. The principal stress and principal normal
vectors are readily obtained from plastic work balance and are:
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To avoid selecting a yield surface that may introduce bias, we can
define an instantaneous flow rule for shear to relate the two deviatoric
stresses with the respective normal vectors through an unknown con-
stant, κ, as =N κ s σ( / )ij ij eq such that:

=N κ σ
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Combining Eqs. (19-22), it is straightforward to obtain:
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Note that anisotropy in Eq. (23) for an assumed yield function can
be accounted for by the ratio of =σ τ σ σ/ /eq eq 1 in shear loading evaluated
with respect to the current material axes. Making use of =σ dγ˙ σd

dγ , a
differential equation for the shear stress is obtained from Eq. (17) as:
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that can be readily integrated using the fourth-order Runge-Kutta
method to obtain the shear stress and the normal stress follows from
Eq. (19). No assumptions of isotropy or anisotropy have been made to
obtain Eq. (24) and its integration provides the stress components in the
global or reference frame. To demonstrate the development of normal
stresses in simple shear we will adopt a fictional model material that is
elastic-perfectly plastic with G = 84 GPa selected to be representative of
steel. We will consider three different shear yield strengths of 173 MPa,
566 MPa, and 866 MPa. For reference, the respective shear yield
strengths would correspond to von Mises yield strengths of approxi-
mately 300 MPa, 980 MPa, and 1500 MPa. The initial conditions to
integrate Eq. (24) starting at the onset of plastic deformation are:

= + =τ
σ

γ
2

4 constantyield

yield

yield
12 2
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Figure. 2. Development of normal stress in simple shear for an elastic-perfect plastic material with different yield strengths and a shear modulus of steel at 84 GPa.
The normal stresses are equal-and-opposite such that = −σ σ22 11.
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As shown in Figure 2, the development of normal stresses with re-
spect to shear is on the order of 1% for steels with a tensile yield
strength of ~1500 MPa that is typical for hot stamped steels. The results
can be generalized to aluminum or other alloys using the ratio of the
shear yield stress to the shear modulus (τy/G) for the three cases con-
sidered. The relatively simple integration of Eq. (24) avoids the need for
a custom user-defined material model with the logarithmic rate to be
implemented into a commercial finite-element code such as LS-DYNA
which was done in Butcher and Abedini (2017).

The theoretical analysis of simple shear for elastic-perfectly plastic
materials confirms that the normal stress can be considered negligible
relative to the applied shear stress, which should also hold for pressure-
independent anisotropic materials without tension-compression asym-
metry. However, it is worth demonstrating that the calibration of the
anisotropic yield function may lead to erroneous predictions for the
normal stresses. It is critical to emphasize that although an anisotropic
yield function can be used to account for anisotropy of the hardening
response from the measured shear stress as done by Chen et al. (2018),
the integration of the same yield function in simple shear under asso-
ciated flow does not necessarily produce the same result.

To demonstrate the importance of anisotropic yield function cali-
bration on the development of normal stresses, single-element simula-
tions of simple shear were conducted using the commercial finite-ele-
ment code, LS-DYNA. The associated Yld2000-2d model of Barlat et al.
(2003) was employed (see Section 4) for an aluminum alloy AA7075-
T6. The coefficients of the Yld2000-2d model for this material were
determined by Abedini et al. (2018b) using a “conventional calibration”
method using tensile stresses and R-values as well as a modified cali-
bration technique that enforced equal and opposite principal strains in
shear (ε1= -ε3). Recently, Butcher and Abedini (2019) provided a
general solution for the plastic constraints for pressure-independent
plasticity in generalized plane strain conditions of which the so-called
shear constraint of Abedini et al. (2018b) is included. It was demon-
strated by Abedini et al. (2018b) that the conventional calibration of
Yld2000-2d could introduce a non-physical hydrostatic stress in simple
shear but the magnitude of the normal stresses was not reported. It is
possible that large normal stresses could develop due to anisotropy but
the hydrostatic stress remains zero since they are theoretically equal in
magnitude but opposite in sign.

Re-visiting the analysis of Abedini et al. (2018b) for AA7075-T6, it is
evident from Figure 3 that the conventional calibration of anisotropic
yield criteria that is only focused upon tensile stresses and R-values can
lead to considerable non-zero normal stresses. When the anisotropic

yield function was calibrated to enforce the shear constraint upon the
normal vectors required by pressure-independent plasticity and the
deformation gradient of Eq. (1), the hydrostatic stress remains close to
zero. This result highlights the importance of calibration of associated
anisotropic yield criteria in shear stress states. Note that the difference
between the shapes of the curves in Figures 2 and 3 is due to the ob-
jective rates since the LS-DYNA code utilizes the Jaumann rate while a
logarithmic rate was used in the analytical solution shown in Figure 2.

It is emphasized that the solutions in Figures 2 and 3 for the relative
magnitude of the normal stresses are derived with respect to the re-
ference frame and not the material frame. The normal stresses in the
reference frame can be neglected to simplify the experimental analysis
of the shear tests. Only the shear stress in Eq. (16) is significant and will
be transformed into the material frame to then account for shear ani-
sotropy. The normal stresses in the material frame may not be negligible but
will remain equal and opposite.

As a consequence of the negligible normal stress in the reference
frame, the principal stress directions remain essentially constant
at± 45° to the applied shear direction. The principal stress and incre-
mental principal strains of Eqs. (2) and (11) are always coaxial and
aligned so that the stress and strain increments are proportional.
However, the principal stress and total principal strain (Eq. 5) are not
proportional and are only aligned at the onset of yield for a rigid-plastic
material. The divergence of the principal stress and principal strain
directions is shown in Figure 4 as a function of the applied shear. This
should not be confused with the rotation of the material frame which is
governed by the rotation tensor of Eq. (9).

2.3. Conversion of Shear Stress-Strain to Equivalent Stress-Strain

With the fundamentals of shear of anisotropic materials established,
we can now describe how the experimental shear stress-strain results
can be converted to equivalent stress-strain data to calculate hardening
behaviour or flow curves of materials to large strains. The incremental
plastic work was given in Eq. (13) such that the incremental plastic
strain increment can be obtained using work-conjugacy in Eq. (14),
restated below:

⎜ ⎟= ⎛
⎝

⎞
⎠

dε τ
σ

dγeq
p

eq β

p

(27)

In this equation, the value of shear-to-equivalent stress ratio or the
so-called shear ratio, τ/σeq, is the key to obtain the hardening behaviour
from the shear test. The τ/σeq ratio is used for determining the

Figure. 3. Development of normal stresses in simple shear for an anisotropic material (AA7075-T6) with and without the shear constraint of Abedini et al. (2018b)
enforced on an associated Yld2000-2d yield criterion. The solution for the conventional calibration is inconsistent with pressure-independent plasticity since the
normal stresses have a similar magnitude with the same sign for the loading case considered.

A. Abedini, et al. Mechanics of Materials 148 (2020) 103419

5



equivalent plastic strain (using Eq. 27) and also the equivalent stress by
multiplying its inverse to the shear stress:

⎜ ⎟= ⎛
⎝

⎞
⎠

−

σ τ
σ

τeq
eq β

1

(28)

It is assumed that experimental shear data is available. In the ab-
sence of tensile data, τ/σeq can be estimated by adopting a yield cri-
terion such as the isotropic Hosford yield criterion:

⎜ ⎟
⎛
⎝

⎞
⎠

=
+ −

τ
σ

1
(1 2 )eq

Hosford

a a( 1) 1/ (29)

in which “a” is the exponent of the yield criterion and a=2 reduces the
model to von Mises with a shear-to-equivalent stress ratio of 0.577.
Suggested exponents for isotropic BCC and FCC materials are a=6 and
a=8, respectively (Hosford, 1996), with shear-to-equivalent stress ra-
tios of 0.558 and 0.545.

A more robust approach to find τ/σeq is to perform both a tensile and
a shear test as proposed by Rahmaan et al. (2017). These two tests are
complementary and are conducted to extract the stress-strain history
and obtain τ/σeq at the same level of plastic work. In terms of the test
directions, Rahmaan et al. (2017) suggested that the tensile and shear
tests should be performed such that they have the same major principal
direction. Note that the shear state has two equal and opposite principal
stresses oriented at± 45° with respect to the maximum shear direction.
For instance, Rahmaan et al. (2017) suggested that if a tensile test is
performed in the RD, the complementary shear test should be con-
ducted with the shear load along the 45°, corresponding to point ① in
Figure 5, with the major principal direction along the RD. Once the
shear-to-equivalent stress ratio is obtained, the hardening response of
the material can be derived using the procedure described above. In this
approach, no yield criterion is required to be assumed since the shear
ratio is determined experimentally.

For an orthotropic material that does not exhibit tension-compres-
sion asymmetry, several conditions are dictated due to symmetry of the
yield surface. For instance, the shear states associated with Points ① and
③ in Figure 5 have the same principal directions but with opposite signs.
For a symmetric material, the yield stress is identical at these two

points; however, this does not hold for asymmetric materials such as
magnesium alloys with HCP crystal structure (Abedini et al., 2017b).
Furthermore, for an orthotropic material, the shear yield stresses shown
in Figure 5(b) from 0° to 90° will be identical to shear stresses from 90°
to 180°. These conditions are in accordance with the orthotropic-sym-
metric formulation of the Yld2000-2d yield criterion (Barlat et al.,
2003) as presented in Section 4.

2.4. Incorporation of Material Frame Rotation and Shear Anisotropy into
the Shear Conversion Methodology

The macroscopic plastic work balance that enables the shear con-
version in Eq. (27) also holds for anisotropic materials. The shear-to-
equivalent stress ratio now becomes a function of the current location
of the material axes that evolves with deformation. The rotation of the
material axes (RD-TD) with the applied deformation according to Eq.
(9) is a first-order approximation that neglects rotation due to plastic
and microstructural spin. The methodology of Rahmaan et al. (2017)
can be directly extended by performing multiple shear tests to obtain τ/
σeq in different directions and interpolating between the discrete values
of τ/σeq. In this approach, the equivalent stress used in the normal-
ization of the shear stress is that of the reference direction (rolling di-
rection, for instance). Using the rotation tensor in Eq. (9), the location
of the material axes is derived and the τ/σeq ratio for that specific or-
ientation of the material axes has to be acquired from a curve similar to
Figure 5(b) that specifies shear anisotropy or shear yield strength in
different directions. This curve can be obtained experimentally with
several shear test orientations. In addition, a yield criterion can be
calibrated to the experimental data to predict the shear yield stresses at
intermediate angles. Subsequently, the equivalent plastic strain incre-
ment is directly determined from the shear test data as:

⎜ ⎟ ⎜ ⎟= = ⎛
⎝

⎞
⎠

= ⎛
⎝

⎞
⎠

+ ⎛
⎝

− ⎞
⎠

dε
τdγ

σ
τ

σ
dγ τ

σ
ε dε τ

G¯
2 1 sinh 1

2eq
p

p

eq β

p

eq β

2
1 1

(30)

and the corresponding equivalent stress is readily calculated using the
measured shear stress and the current shear stress ratio in Eq. (28). It
should be mentioned that Rahmaan et al. (2017) assumed that τ/σeq in
Eq. (30) remains constant throughout deformation. It will be shown
later that this assumption is reasonable for mildly anisotropic materials.
Although the initial material axes directions were considered by
Rahmaan et al. (2017), the rotation of the material axes with de-
formation was not taken into account.

The subsequent sections will characterize the experimental shear
stress anisotropy of four different automotive alloys and evaluate its
influence upon the hardening response. It is important to emphasize
that from a theoretical perspective, any interpolation-based strategy is
admissible to estimate the shear stress between different test orienta-
tions to determine the plastic strain increment in Eq. (30). The accuracy
of the interpolation depends upon the shear anisotropy and the number
of shear tests performed at intermediate orientations. The methodology
of the present study will focus upon using a non-quadratic Yld2000-2d
yield function calibrated with multiple shear tests to accurately capture
the shear anisotropy which is equivalent to a non-linear interpolation.
An alternative interpolation methodology based upon assuming a
simple functional form using only the experimental shear stress ratios
will also be considered in Section 5.4.

Finally, it is emphasized that the present shear conversion metho-
dology to determine the hardening response inherently assumes iso-
tropic hardening behaviour and should not be confused with the as-
sumption of isotropic plasticity. In other words, Bauschinger effects,
kinematic hardening, and distortional hardening (Chaboche, 2008;
Barlat et al., 2011) are not considered. Distortional hardening could be
readily considered for materials with evolving plasticity by extending
the interpolation of the shear stress ratio as a function of plastic work.
Future work on the methodology should investigate alloys with such

Figure. 4. Comparison of the orientation of the major principal stress and
major principal strain obtained using the logarithmic objective rate for an
elastic-perfectly plastic material.
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complex hardening mechanisms along with cyclic loading to activate
these mechanisms.

3. Materials and Experimental Data

Four different types of automotive alloys were considered in this
work: two advanced high strength dual-phase steel sheets, DP980 and
DP1180, with nominal thicknesses of 1.20 mm and 1.00 mm, respec-
tively, as well as 1.55 mm thick AA5182-O aluminum rolled sheet and
2.00 mm thick AA6063-T6 aluminum extrusion from the same lot of
extrusions studied by Kohar et al. (2016). The uniaxial tensile responses
of the materials in different orientations with respect to the rolling or
extrusion directions (reference directions) were obtained using stan-
dard tensile geometries with the normalized yield stresses and R-values
reported in Table 1. Furthermore, shear tests were conducted using a

shear specimen geometry adopted from Peirs et al. (2012) as shown in
Figure 6. The shear tests were performed by a standard tensile frame
with the samples fabricated from the materials in multiple orientations
with respect to their reference directions to reveal the directional de-
pendency of the shear response. This shear geometry has been analyzed
in detail with the aid of finite-element simulations by Peirs et al. (2012)
and Rahmaan et al. (2020) where it is shown that the shear stress that
an element at the center of the gauge area experiences can be simply
determined from F/Ao in which F is the applied global force and Ao is a
constant gauge area. The gauge area is calculated from multiplication of
the materials thickness by the gauge length (3.0 mm as shown in
Figure 6).

For all the experiments, full-field DIC techniques were utilized for
strain measurements with a virtual strain gauge length of 0.50 mm.
Details on DIC analysis using the same shear geometry are provided by
Rahmaan et al. (2017). The measured DIC strain path of a re-
presentative shear test on DP1180 is shown in Figure 6. It can be seen
that equal and opposite principal strains are achieved in the experiment
as expected for the shear state in the absence of Swift effects
(Swift, 1947). Note that tensile and shear data for the same DP980
material was also reported in Noder and Butcher (2019) for a limited
number of directions.

The biaxial r-value, rb, of the materials were characterized by means
of the through-thickness compression test on a single-layer disc (Barlat
et al., 2003; Tian et al., 2016) with a diameter of 5.0 mm using a
custom-made compression rig (Ghaffari et al., 2014). This test consists
of successive applications of compressive force followed by careful
measurements of the diameters of the disc along the RD and TD under
an optical microscope to measure the strains. After each load incre-
ment, surfaces of the compression rig in contact with the sample were
polished and a thin layer of TeflonⓇ spray was applied to reduce fric-
tion. Subsequently, a line was fit to the experimental strain data to
estimate the biaxial r-value.

Table 1 summarizes all the experimental characterization data. Note
that the stress values given in Table 1 were extracted at the plastic work
level corresponding to the onset of diffuse necking in the tensile test
direction with the lowest necking strain (limiting direction). It is worth
mentioning that all the experiments performed in this study were done
with a quasi-static von Mises strain rate of 0.001 s−1 and at least four

Figure. 5. Schematic views of (a) top half of a yield surface plotted in 3-D in which the shear region is shown in green, and (b) variation of shear yield stress with
direction for an orthotropic material.

Table. 1
Normalized yield stresses in tension (σ) and shear (τ) with respect to uniaxial
tensile stress in the rolling or extrusion directions, and R-values (r) in different
directions. The variable wp corresponds to the plastic work per unit volume. The
values in brackets show the standard deviations.

Material DP1180 DP980 AA5182-O AA6063-T6

wp [MJ/m3] 61.11 70.00 51.50 19.60
σ0/σ0 1.000 (0.006) 1.000 (0.000) 1.000 (0.01) 1.000 (0.005)
σ15/σ0 0.995 (0.003) 1.012 (0.007) 0.972 (0.003) 0.969 (0.007)
σ30/σ0 0.996 (0.003) 0.995 (0.003) 0.960 (0.002) 0.992 (0.005)
σ45/σ0 1.004 (0.007) 0.988 (0.005) 0.948 (0.005) 0.975 (0.003)
σ60/σ0 1.008 (0.008) 1.009 (0.004) 0.935 (0.010) 0.910 (0.003)
σ75/σ0 1.013 (0.003) 1.018 (0.004) 0.945 (0.004) 1.007 (0.002)
σ90/σ0 1.025 (0.007) 1.018 (0.003) 0.964 (0.000) 0.996 (0.005)
τ0/σ0 0.600 (0.005) 0.591 (0.010) 0.540 (0.010) 0.599 (0.005)
τ22.5/σ0 0.600 (0.008) 0.581 (0.008) 0.517 (0.009) 0.560 (0.002)
τ45/σ0 0.612 (0.005) 0.608 (0.005) 0.540 (0.007) 0.523 (0.006)
r0 0.82 (0.01) 0.78 (0.02) 0.60 (0.04) 0.53 (0.05)
r15 0.84 (0.01) 0.79 (0.02) 0.67 (0.02) 0.56 (0.12)
r30 0.90 (0.01) 0.86 (0.03) 0.80 (0.01) 0.38 (0.04)
r45 0.95 (0.01) 1.03 (0.01) 0.91 (0.02) 0.53 (0.03)
r60 0.98 (0.01) 0.96 (0.01) 0.83 (0.01) 0.61 (0.03)
r75 1.00 (0.00) 0.87 (0.03) 0.71 (0.01) 0.77 (0.03)
r90 0.98 (0.01) 0.95 (0.01) 0.70 (0.01) 1.20 (0.39)
rb 0.94 (0.03) 0.84 (0.06) 1.03 (0.03) 0.36 (0.13)
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test repeats were conducted to ensure repeatability.

4. Yield Criterion

The yield strength data reported above was used to calibrate the
plane stress Yld2000-2d anisotropic yield criterion (Barlat et al., 2003)
with the equivalent stress of:

⎜ ⎟= ⎛
⎝

′ − ′ + ″ + ″ + ″ + ″ ⎞
⎠

σ X X X X X X2 2
2eq

Yld
a a a a

2000 1 2 2 1 1 2
1/

(31)

in which Xiʹ and Xiʹʹ are the principal values of the linearly transformed
stress tensors, Xʹ and Xʹʹ, that are given by:

′ = ′X σL: , (32)

″ = ″X σL : (33)

The eight calibration parameters, α1-8, are embedded in the fourth-
order linear stress transformation tensors Lʹ and Lʹʹ for plane stress
loading as:

⎡

⎣

⎢
⎢
⎢
⎢
⎢

′
′
′
′
′

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

−
−

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣
⎢

⎤

⎦
⎥

L
L
L
L
L

α
α
α

2/3 0 0
1/3 0 0
0 1/3 0
0 2/3 0
0 0 1

,

11

12

21

22

66

1
2
7

(34)

⎡

⎣

⎢
⎢
⎢
⎢
⎢

″
″
″
″
″

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

− −
− −
− −

− −

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

L
L
L
L
L

α
α
α
α
α

1
9

2 2 8 2 0
1 4 4 4 0
4 4 4 1 0

2 8 2 2 0
0 0 0 0 9

11

12

21

22

66

3
4
5
6
8

(35)

In the present paper, a least-square minimization approach was
utilized to determine α1-8 from the experimental data given in Table 1.
The exponent of the yield function “a” in Eq. (31) was set to 6 for BCC
(DP1180 and DP980) and 8 for FCC (AA5182-O and AA6063-T6) alloys
as suggested by Hosford (1996). Note that in order to calibrate the
model, a non-associated flow rule was employed in which the

coefficients of the Yld2000-2d model were calibrated to the experi-
mental data of yield stresses to derive stress-potentials or yield loci of
the materials. Similarly, an independent set of coefficients could be
calibrated to describe the direction of plastic flow through plastic po-
tentials within the non-associated framework but is not required for
performing the shear conversion to obtain the hardening response. The
conversion method can also be effectively applied under associated
flow rule provided that the yield function (that is identical to the plastic
potential by definition) is properly calibrated to be in accordance with
the mechanics of generalized plane strain deformation that includes
shear state as well. Under such deformation modes, one principal strain
remains zero and should be enforced upon calibration of the model
(Butcher and Abedini, 2019).

5. Results and Comparison

5.1. Calibrated Yield Loci for Shear Interpolation

The coefficients of the Yld2000-2d criterion calibrated using ex-
perimental data of the four materials are given in Table 2. The

Figure. 6. Shear specimen geometry of Peirs et al. (2012) (all dimensions are in millimetres), and measured strain path of a representative shear test on DP1180.

Table. 2
Coefficients of the Yld2000-2d yield function for shear interpolation. The ca-
libration was performed with an emphasis upon obtaining best agreement with
the shear stress which is required to obtain the hardening response from the
shear test data. The R-values were not used in the calibration of the yield
function.

Coefficient DP1180 DP980 AA5182-O AA6063-T6

α1 0.9236 1.8511 0.7831 1.0239
α2 0.9231 -0.4055 1.2461 1.0896
α3 1.0018 -1.4455 -1.2697 1.4699
α4 1.0152 -1.0251 -1.0389 1.0598
α5 1.0180 -0.2643 1.0327 -0.9579
α6 0.9036 1.3100 0.9998 -0.9274
α7 0.9030 0.6386 -0.9403 0.6865
α8 -1.1278 1.6218 -1.7023 -1.6899
a 6.00 6.00 8.00 8.00
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predictions of the model in terms of variations of normalized tensile and
shear yield stresses in different orientations with respect to the re-
ference (rolling or extrusion) directions for DP1180, DP980, AA5182-O,
and AA6063-T6 are shown in Figures 7(a-d), respectively. For com-
parison, the experimental data measured in the present study are also
depicted in Figure 7 with red symbols. Overall, it can be seen that the
Yld2000-2d model is able to capture the anisotropic yield strengths in
tension and shear to relatively good accuracy. These good correlations
include directional dependency of shear stresses which is of high im-
portance for measuring flow curves of the materials from shear test
results using the proposed technique described in Section 2.

Note that the shear stress ratios of the four materials were measured
at the plastic work levels listed in Table 1 that corresponds to the plastic
deformation level at which tensile test with the lowest necking strain
reached the onset of necking. To reach this plastic work level, there are
some material frame rotations in the shear tests with the magnitudes
that depend on the materials (~3.6° for DP980, ~3.1° for DP1180,
~4.5° for AA6063-T6 and ~9.8° for AA5182-O). Therefore, the shear
angles are slightly different than the initial specimen fabrication angles
and are reflected in the experimental data reported in Figure 7.

5.2. Hardening Response

Using the procedures described in Sections 2.3 and 2.4, the hard-
ening response of the materials were obtained from the shear data. Two
approaches were considered:

Method 1 - Shear Isotropy: This approach is in accordance with
Rahmaan et al. (2017) where the shear ratio, τ/σeq, for a given direction
of interest is held constant over the range of plastic work used in the
shear conversion. The results of shear tests in the 45° orientation were
used (principal directions along the RD/ED and TD or Point ① in
Figure 5), and the shear stress-strain results were converted to
equivalent stress-strain data assuming a constant shear-to-equivalent
stress ratio (τ/σeq=τ45/σeq).

Method 2 – Shear Anisotropy: Shear anisotropy is considered by
accounting for variations of τ/σeq during deformation due to the ma-
terial axes rotation. Similar to the previous approach, the results of the
shear test in the 45° orientation were used. However, the shear stress-
strain results were converted to equivalent stress-strain data by in-
corporation of material frame rotation by utilizing non-constant τ/σeq
values determined from the yield criterion calibrated by means of the

Figure. 7. Normalized stress in different orientations with respect to the reference direction for (a) DP1180, (b) DP980, (c) AA5182-O, and (d) AA6063-T6. Red
symbols show the experimental data. The calibration was performed with an emphasis upon obtaining best agreement with the shear stress which is required to
obtain the hardening response from the shear test data. For orthotropic-symmetric materials, normalized shear stress is symmetric about the 45° orientation.
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experimental data including shear tests in multiple orientations as
shown in Figure 7.

Using the two approaches above, the hardening response of DP1180
sheet was obtained as depicted in Figure 8. For comparison, the result
of a uniaxial tensile test in the RD is also shown in Figure 8. It is ap-
parent that the tensile data is limited by the onset of localization at a
low strain of ~0.06 while the shear test increases the available range of

strain by an order of magnitude to over 60%.
In terms of the two methodologies used to convert the shear data,

the stress-strain curve derived by assuming a constant τ/σeq (labelled as
reference frame in Figure 8) at small strains is in excellent agreement
with the curve determined by accounting for material axes rotation
(non-constant τ/σeq) labelled as material frame in Figure 8. This be-
haviour is expected since there is no significant rotation of the material

Figure. 8. Hardening response of DP1180 obtained using uni-
axial tension and simple shear tests in the rolling direction. The
“Reference Frame” corresponds to a constant value for τ/σeq. The
“Material Frame” is associated with accounting for rotation of the
material axes and the interpolation τ/σeq using the calibrated
Yld2000-2d yield function. The uniaxial tensile data (shown in
red) is limited to low strains by the onset of diffuse necking.

Figure. 9. Hardening responses of (a) DP980, (b) AA5182-O, and (c) AA6063-T6 obtained using shear tests in the rolling and extrusion directions, respectively. The
“Reference Frame” corresponds to a constant value for τ/σeq. The “Material Frame” is associated with accounting for rotation of the material axes and the inter-
polation of τ/σeq using the calibrated Yld2000-2d yield function.
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frame at small strains. For larger strains, the equivalent stress con-
sidered the rotation of the material frame is approximately 1.5%
higher. This difference is due to the consecutive rotation of the material
frame leading to activation of different shear orientations and conse-
quently a non-constant τ/σeq ratio caused by shear anisotropy that was
revealed by the experiments (shown in Figure 7a). However, since
DP1180 is relatively isotropic, this small level of difference can be
considered negligible and possibly within the experimental variation.
Thus, the shear conversion technique of Rahmaan et al. (2017) using a
constant shear-to-equivalent stress ratio appears to be sufficient for this
DP1180 steel.

Figure. 9. (continued)

Table. 3
Coefficients of the modified Hockett-Sherby model calibrated using the tensile
and shear data.

Coefficient Ā B̄ C̄ D̄ Ē

DP980 sheet 501.93 1092.85 10.17 0.50 310.13
DP1180 sheet 665.41 1233.64 15.31 0.58 286.85
AA5182-O sheet 140.46 284.73 18.83 1.05 213.72
AA6063-T6 extrusion 91.21 271.79 19.94 0.74 9.40

A. Abedini, et al. Mechanics of Materials 148 (2020) 103419

11



Figures 9(a)-(c) illustrate the hardening behaviour in the reference
(rolling or extrusion) direction of DP980, AA5182-O, and AA6063-T6,
respectively. Similar to DP1180, the DP980 exhibits up to 2% difference
between the flow curves measured using the two techniques. Never-
theless, AA5182-O shows an approximately 5% higher response when
the stress-strain curve of the material is determined by considering the
material frame rotation. The most remarkable difference between the
hardening curves is exhibited in the hardening curves of AA6063-T6
extrusion (15% difference). This behaviour is in accordance with a
higher degree of anisotropy in the aluminum alloy. In particular, the
AA6063-T6 extrusion has dominant textural components due to its
manufacturing process. The higher directional sensitivity in the shear
response of the aluminum alloys, as seen in Figures 7(c) and (d), leads
to more pronounced contrasts in the hardening curves when an in-
stantaneous τ/σeq is used. Note the oscillations in the stress response of
AA5182-O in Figure 9(b) is due to the Portevin-Le Châtelier (PLC) ef-
fects that are known to exist for Mg-Al alloys.

5.3. Constitutive Fits

To describe the isotropic hardening response of the materials ob-
tained to large strain levels using the shear tests, the flexible modified
Hockett-Sherby (MHS) model was selected

= − − − +σ B B A C ε E ε¯ ( ¯ ¯ )[exp( ¯ ( ) )] ¯eq eq
p D

eq
p¯

(36)

where Ā, B̄, C̄ , D̄, and Ē are the calibration coefficients. The MHS
model was calibrated using least squares minimization using MatlabⓇ

and the coefficients are tabulated in Table 3 for each alloy. A com-
parison of the MHS model with the experimental stress response for
each material is shown in Figure 10 with good agreement obtained over
the range of strain considered.

5.4. Evaluation of an Alternative Interpolation Method for Shear
Anisotropy

In the present study the shear states in different orientations were
experimentally characterized while an anisotropic yield criterion
(Yld2000-2d) was adopted to provide a continuous interpolation of the
shear yield stress between calibration points where experimental data
was not available. However, assuming a yield surface is not a require-
ment, provided that a large number of experimental shear data in dif-
ferent directions is available such that a mathematical relation can be
fit to the experimental data with high confidence. The shear conversion
technique in Eq. (30) only needs the uniaxial tension in the reference
direction to be characterized with the shear anisotropy so that a rela-
tion for τ/σeq with orientation can be established. Once this relationship
is derived, the technique can be effectively applied without prior
knowledge of the yield surface.

To demonstrate the alternative interpolation strategy, a simple tri-
gonometric function in the form of Eq. (37) can be used to interpolate
the shear-to-equivalent stress ratio:

= − +τ
σ

a c θ d b¯ sin[¯ ( ¯)] ¯
eq (37)

The two aluminum alloys were selected to calibrate Eq. (37) be-
cause they had the largest shear anisotropy relative to the DP steels. The
coefficients of Eq. (37) were calibrated to the experimental shear data,
and their values are presented in Table 4.

Figure 11 compares the predicted distributions for shear stress using
Yld2000-2d and Eq. (37). The resulting hardening responses for the two
methods for AA5182-O and AA6063-T6 are shown in Figure 12. It can
be seen that both models are in good agreement, as shown in Figure 12,
although there are some mild deviations. The advantage of assuming a

Figure. 10. Comparisons of the calibrated MHS hardening model with the experimental stress response obtained using tensile and shear tests in the rolling or
extrusion direction.

Table. 4
Coefficients of the interpolation function of Eq. (37) to describe shear aniso-
tropy of AA5182-O and AA6063-T6.

Coefficient ā b̄ c̄ d̄

AA5182-O sheet 0.0115 8.0 0.5891 0.5285
AA6063-T6 extrusion -0.0384 4.0 0.3927 0.5607
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simple interpolation function such as Eq. (37) is that only the shear test
data and the tensile stress in the reference direction are required and
the conversion process is simplified even for severely anisotropic ma-
terials such as the extrusion. However, from an academic perspective, it
may be preferable to calibrate an anisotropic yield function such as the
Yld2000-2d that includes the available tensile data to perform a non-
linear interpolation under restrictions of convexity that control the
shape of the yield surface.

6. Discussion

6.1. Main Factors Influencing the Shear Conversion Technique

It can be inferred that there are two primary factors that influence
the hardening response of materials obtained from shear tests:

1. Degree of anisotropy: For relatively isotropic materials, such as
the two dual-phase sheets of steel, DP980 and DP1180 studied in the
present study, using a constant τ/σeq to convert the shear data is suf-
ficient and the shear conversion technique of Rahmaan et al. (2017)
appears valid. For AA5182-O, using a constant shear-to-equivalent
stress ratio provides a reasonable approximation to a moderate strain
level of about 0.2 but should account for shear anisotropy at larger
strains or else it would underestimate the hardening response. The
AA6063-T6 requires that shear anisotropy be considered in the analysis;
otherwise, the hardening rate would have been significantly over-
estimated.

2. Shear Ductility: The extent of material frame rotation in simple
shear is a function of the applied deformation (see Eq. 9). In other
words, the importance of accounting for frame rotation depends upon
the shear failure strain. For a severely anisotropic material with low
shear ductility, such as ZEK100 magnesium alloys (Abedini et al.,
2017a), accounting for material frame rotation may not make a notable
difference because the strains are not large enough to cause an appre-
ciable rotation of the material frame prior to fracture. Note that none of
the materials investigated in this work fall in the low-ductility category

since they all have equivalent plastic strains at fracture in excess of 0.60
corresponding to at least ~28° rotation.

6.2. Implications on Choice of Shear Test Geometry

The methodology presented in this study assumes the selection of an
appropriate shear test geometry such that homogeneous strain and
stress fields are achieved in the gauge region throughout deformation.
Inappropriate shear test geometries may cause a divergence from
simple shear loading with deformation and can be better investigated
with the aid of finite-element simulations. The goal of the present paper
was to establish a method for extracting hardening response of aniso-
tropic materials assuming that experimental data in simple shear is
available.

Premature edge fracture can be an issue in simple shear tests that
limits the strain level used to obtain the hardening response.
Alternatively, the onset of shear localization prior to fracture may occur
which coincides with the formation of a secondary shear band of in-
tense local strain that cannot be captured by conventional DIC strain
measurement. As described by Rahmaan et al. (2017), the Zener-Hol-
loman criterion (Zener and Hollomon, 1944) that is based upon the
peak-load in shear can be used to assist in determining a cut-off strain
for usable shear data. The onset of the peak load in a shear test can be
caused by material softening (damage), localization into a secondary
shear band and/or the onset of edge cracking of the shear specimen.
Alternatively, in-plane torsion tests can be utilized for isotropic sheet
metals which have been reported to provide high strains to fracture
(Yin et al., 2012).

6.3. Notes on Response of AA6063-T6 Extrusion

Among the four materials studied in this work, AA6063-T6 extru-
sion displayed the most severe anisotropic behaviour in shear.
Figure 13 presents an electron-backscatter diffraction (EBSD) map and
the corresponding pole figure of the through-thickness microstructure

Figure. 11. Normalized shear stress in different orientations with respect to the rolling direction for (a) AA5182-O and (b) the extrusion direction for AA6063-T6.
Red symbols show the experimental data.
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for the AA6063-T6 aluminum extrusion. This severe anisotropy arises
from the complex deformation paths and high temperatures generated
in the material during manufacturing that results in a strong hetero-
geneous microstructure. The core section of the extrusion contains a
microstructure that is predominantly cube texture. The outer surfaces of
the extrusion (approximately 0.40 mm in thickness on each surface)
contain coarse grains that have recrystallized with a predominantly
rotated copper texture; this phenomenon is known as the peripheral
coarse grain (PCG) structure. The cube dominated core section has four-
fold symmetry that lends itself to well-defined orthotropic axes with
symmetry. However, the rotated copper texture in the PCG layer has
two-fold symmetry where these symmetry axes do not align with the
core section. As a result, the aggregated microstructure of the extruded

AA6063-T6 results in a loss of unique orthotropic axes that are aligned
in the extrusion direction. This loss in orthotropic symmetry is further
compounded by the evolution of texture towards preferential directions
that is dependent on the deformation state (Kohar et al., 2019a).

To investigate the potential loss of symmetry in the extrusion,
supplemental shear testing was performed in additional directions of
-22.5°, -45°, and 90° in accordance with the methodology outlined in
Section 3 for the AA6063-T6 extruded aluminum alloy. Table 5 sum-
marizes the supplementary experimental data that was performed for
the AA6063-T6 alloy. The experimental measurements show that there
is no symmetry about± 45° or± 22.5°. Furthermore, there is no sym-
metry between 0° and 90° for this AA6063-T6 extrusion.

As discussed in Section 2, the Yld2000-2d model has been

Figure. 12. Comparison of the hardening response of (a) AA5182-O and (b) AA6063-T6 using an interpolation for shear anisotropy using Yld2000-2d and the
phenomenological form of Eq. (37) referred to as ‘Interpolation method’.
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formulated for orthotropic-symmetric materials and therefore is unable
to resolve the response of AA6063-T6 extrusion as illustrated in
Figure 14. This result highlights that an enhanced constitutive model,
such as a new phenomenological yield function or the physics-based
crystal plasticity model (Inal et al., 2010; Dumoulin et al., 2012; Kohar
et al., 2019b) may be required to capture the non-orthotropic behaviour
observed during simple shear for the AA6063-T6 extruded aluminum
alloy.

6.4. Evolution of Anisotropy

Although the evolution of anisotropy or distortional hardening is
known to be pronounced in HCP materials (such as magnesium alloys in
Ghaffari Tari et al., 2014 and Abedini et al., 2018a and titanium alloys
in Gilles et al., 2011 and Knezevic et al., 2013), most commercial alloys
exhibit some degree of evolving anisotropy with deformation. This
implies that the shape of yield surface changes with deformation even
under monotonic loading conditions due to evolution of materials
crystallographic texture and consequently the yield stress ratios and r-
values evolve with plastic strain.

Among the four materials studied in this paper, the evolution of
anisotropy is expected to be insignificant for DP980, DP1180, and
AA5182-O sheets. However, due to the features of the AA6063-T6
crystallographic texture described in Section 6.3, it is expected that this
material undergoes a more significant plastic anisotropy evolution. In
the present paper, the evolution of anisotropy was not considered;
nevertheless, the approach can be effectively applied if progressively
evolving yield surfaces are characterized as a function of plastic work

Figure. 13. Through-thickness microstructure of AA6063-T6 material (adapted from Muhammad et al., 2019).

Table. 5
Additional measurements of normalized shear with respect to uniaxial tensile
stress in extrusion direction for AA6063-T6 extruded aluminum alloy. The va-
lues in brackets show the standard deviations.

τ0/σ0 τ22.5/σ0 τ45/σ0 τ90/σ0 τ-22.5/σ0 τ-45/σ0

0.599 (0.005) 0.560
(0.002)

0.523
(0.006)

0.573
(0.002)

0.582
(0.005)

0.548
(0.003)

Figure. 14. Shear anisotropy of AA6063-T6 extrusion and prediction of the Yld2000-2d yield criterion with respect to the extrusion direction. Red symbols show the
experimental data. The Yld2000-2d yield criterion is applicable for orthotropic-symmetric materials and has a symmetric response with a frequency of 45° in shear.
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such that the instantaneous shear-to-tensile stress ratio can be derived
with incremental deformation. In such a case, the variation of shear-to-
tensile stress ratio arises from both evolution of anisotropy and rotation
of the material frame; nonetheless, a unique solution can still be de-
termined since these two effects are combined in the measurement.

7. Conclusions

In contrast to the classical uniaxial or biaxial tensile tests, simple
shear tests remain free of plastic instabilities until much higher strains
and provide a promising alternative to obtain the isotropic hardening
response of materials. However, the rotation of the material axes with
deformation and its interaction with shear anisotropy should be con-
sidered which is in general agreement with the observations of Chen
et al. (2018) for torsion of tubes. To account for shear anisotropy and
material frame rotation, the present study has investigated the me-
chanics of shear deformation of elastic-plastic materials. The following
points summarize the main outcomes of this study:

• An experimental methodology was proposed to obtain the hard-
ening response of materials using simple shear tests based upon
plastic work equivalence while accounting for shear anisotropy and
material frame rotation. This technique was employed to derive the
hardening response of four different materials of DP980, DP1180,
AA5182-O, and AA6063-T6.

• It was established that for relatively isotropic materials, such as the
DP steels, accounting for material frame rotation may lead to rela-
tively minor changes in the measured hardening curves. The influ-
ence of accounting for material frame rotation was found to be
minor (on the order of 1.5% to 2%) for the two dual phase steels.
The method of Rahmaan et al. (2017) that neglects the frame rota-
tion is a reasonable approximation for materials with minor shear
anisotropy.

• In contrast, accounting for material frame rotation on the hardening
response of the aluminum alloys was significant with an increase of
5% for AA5182-O sheet and a decrease of 15% for AA6063-T6 ex-
trusion.

• Normal stresses in simple shear for anisotropic materials in the re-
ference frame are negligible on the order of 1% of the applied shear
stress and should be equal in magnitude but opposite in sign.

• Artefacts in the calibration of associated anisotropic yield functions
can cause erroneous normal stresses and the shear constraint of
Abedini et al. (2018b) must be enforced for pressure-independent
plasticity.

• Anisotropic yield functions can be calibrated with experimental
shear data to provide a non-linear interpolation of the shear-to-
tensile stress ratio. Anisotropic yield functions are restricted by
convexity and are expected to provide a more robust approach for
interpolation between the experimental shear stresses used in their
calibration.

• Phenomenological interpolation functions can also be employed for
the proposed shear conversion technique and comparable results to
the non-linear interpolation using non-quadratic yield functions
were obtained. This method is suggested when a full set of experi-
mental data is not available to calibrate advanced anisotropic yield
criteria.
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